Autoencoding Video Frames

Broad, Terence and Grierson, Mick. 2016. Autoencoding Video Frames. Technical Report. Goldsmiths, London. [Report]
Copy

This report details the implementation of an autoencoder trained with a learned similarity metric - one that is capable of modelling a complex dis- tribution of natural images - training it on frames from selected films, and using it to reconstruct video sequences by passing each frame through the autoencoder and re-sequencing the output frames in-order. This is primarily an artistic exploration of the representational capacity of the current state of the art in generative models and is a novel application of autoencoders. This model is trained on, and used to reconstruct the films Blade Runner and A Scanner Darkly, producing new artworks in their own right. Experiments passing other videos through these models is carried out, demonstrating the potential of this method to become a new technique in the production of experimental image and video.


picture_as_pdf
Autoencoding_Video_Frames.pdf
subject
Published Version
Available under Creative Commons: Attribution 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads