A Novel Space Filling Curves Based Approach to PSO Algorithms for Autonomous Agents

Logofătu, Doina; Sobol, Gil; Stamate, Daniel; and Balabanov, Kristiyan. 2017. 'A Novel Space Filling Curves Based Approach to PSO Algorithms for Autonomous Agents'. In: ICCCI 2017: 9th International Conference on Computational Collective Intelligence. Nicosia, Cyprus. [Conference or Workshop Item]
Copy

In this work the swarm behavior principles of Craig W. Reynolds are combined with deterministic traits. This is done by using leaders with motions based on space filling curves like Peano and Hilbert. Our goal is to evaluate how the swarm of agents works with this approach, supposing the entire swarm will better explore the entire space. Therefore, we examine different combinations of Peano and Hilbert with the already known swarm algorithms and test them in a practical challenge for the harvesting of manganese nodules on the sea ground with the use of autonomous robots. We run experiments with various settings, then evaluate and describe the results. In the last section some further development ideas and thoughts for the expansion of this study are considered.


picture_as_pdf
ICCCI2017.pdf
subject
Accepted Version
Available under Creative Commons: Attribution-NonCommercial-No Derivative Works 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads