The Effect of Co-adaptive Learning & Feedback in Interactive Machine Learning

Zbyszynski, MichaelORCID logo; Di Donato, BalandinoORCID logo; and Tanaka, Atau. 2019. 'The Effect of Co-adaptive Learning & Feedback in Interactive Machine Learning'. In: ACM CHI: Human-Centered Machine Learning Perspectives Workshop. Glasgow, United Kingdom 4 May 2019. [Conference or Workshop Item]
Copy

In this paper, we consider the effect of co-adaptive learning on the training and evaluation of real-time, interactive machine learning systems, referring to specific examples in our work on action-perception loops, feedback for virtual tasks, and training of regression and temporal models. Through these studies we have encountered challenges when designing and assessing expressive, multimodal interactive systems. We discuss those challenges to machine learning and human-computer interaction, proposing future directions and research.


picture_as_pdf
zbyszynski_HCML_cr06.pdf
subject
Accepted Version
Available under Creative Commons: Attribution-NonCommercial 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads