A Machine Learning Approach for Predicting Deterioration in Alzheimer's Disease

Musto, Henry; Stamate, Daniel; Pu, Ida; and Stahl, Daniel. 2022. 'A Machine Learning Approach for Predicting Deterioration in Alzheimer's Disease'. In: 20th IEEE International Conference on Machine Learning and Applications (ICMLA). Pasadena, CA, United States 13-16 December 2021. [Conference or Workshop Item]
Copy

This paper explores deterioration in Alzheimer’s Disease using Machine Learning. Subjects were split into two datasets based on baseline diagnosis (Cognitively Normal, Mild Cognitive Impairment), with outcome of deterioration at final visit (a binomial essentially yes/no categorisation) using data from the Alzheimer’s Disease Neuroimaging Initiative (demographics, genetics, CSF, imaging, and neuropsychological testing etc). Six machine learning models, including gradient boosting, were built, and evaluated on these datasets using a nested cross-validation procedure, with the best performing models being put through repeated nested cross-validation at 100 iterations. We were able to demonstrate good predictive ability using CART predicting which of those in the cognitively normal group deteriorated and received a worse diagnosis (AUC = 0.88). For the mild cognitive impairment group, we were able to achieve good predictive ability for deterioration with Elastic Net (AUC = 0.76).


picture_as_pdf
icmla.pdf
subject
Accepted Version

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads