Predicting Alzheimer’s Disease Diagnosis Risk Over Time with Survival Machine Learning on the ADNI Cohort

Musto, Henry; Stamate, Daniel; Pu, Ida; and Stahl, Daniel. 2023. 'Predicting Alzheimer’s Disease Diagnosis Risk Over Time with Survival Machine Learning on the ADNI Cohort'. In: Computational Collective Intelligence. ICCCI 2023.. Budapest, Hungary 27–29 September 2023. [Conference or Workshop Item]
Copy

The rise of Alzheimer’s Disease worldwide has prompted a search for efficient tools which can be used to predict deterioration in cognitive decline leading to dementia. In this paper, we explore the potential of survival machine learning as such a tool for building models capable of predicting not only deterioration but also the likely time to deterioration. We demonstrate good predictive ability (0.86 C-Index), lending support to its use in clinical investigation and prediction of Alzheimer’s Disease risk.


picture_as_pdf
musto_et_al_23-1.pdf
subject
Accepted Version

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads