Time-Dependent Series Variance Estimation via Recurrent Neural Networks

Nikolaev, Nikolay; Tino, Peter; and Smirnov, Evgueni. 2011. Time-Dependent Series Variance Estimation via Recurrent Neural Networks. Artificial Neural Networks and Machine Learning – ICANN 2011, 6791(n/a), pp. 176-184. ISSN 0302-9743 [Article]
Copy

This paper presents a nonlinear model for computing the time-dependent evolution of the variance in time series of returns on assets. First, we design a recurrent network representation of the variance, which extends the typically linear models. Second, we derive temporal training equations with which the network weights are inferred so as to maximize the likelihood of the data. Experimental results show that this dynamic recurrent network model yields results with improved statistical characteristics and economic performance.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads